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Abstract

In [3], Badriev and Zadvornov consider a variational inequality problem with two mono-
tone mappings A and B. The authors show that an iterative sequence converges weakly to
a solution of the problem under suitable conditions for A and B. In this paper, to apply a
theorem in [6], we show an iterative sequence which converges strongly to a solution of the
problem under same conditions for A and B in [3].
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1 Introduction

Let V and H be Hilbert spaces with inner
products (-,-)y and (-, )y, respectively. Let
A:V —V and B: H— H be mappings and
F:V — (—oc0,00] and G : H — (—00, 0] be
proper continuous lower semicontinuous func-
tionals. Let A : V — H be a linear continu-
ous mapping and A* : H — V be the adjoint
mapping of A, i.e., (A*z,v)y = (z,Av)y for
all x € H and v € V. In [3], Badriev and
Zadvornov consider the following variational
inequality problem. Find v € V such that

(Au,v —u)y + (A*BAu,v — u)y
+ G(Av) — G(Au) + F(v) — F(u) >0 (1)

for all v € V. The authors show that an iter-
ative sequence converges weakly to a solution
of the problem under suitable conditions for
A and B.

In this paper, to apply a theorem in [6],
we show an iterative sequence which converges
strongly to a solution of the problem under

same conditions for A and B in [3]. The the-
orem in [6] is related to the result of our pre-
vious paper [1].

2 Preliminaries

Let A: V — V and B : H — H be map-
pings. Mappings A: H - Hand B:V -V
are inverse-storongly monotone mappings if
there exists 04,05 > 0 such that

(Au— Av,u—v)y > oal|Au— Avll},
for all u,v € V and
(Bx — By,x —y)i > op||Bx — By}

for all z,y € H. Then A is called o4-
inverse-strongly monnotone and B is called
op-inverse-strongly monotone. Let C' be a
subset of H. A mapping T of C into itself
is called nonexpansive if

Tz —Tyllg < ||lv—ylla

for all z,y € C. We denote by F(T') the set
of fixed points of T. Let f be a functional

Memoirs of The Faculty of Engineering, Tamagawa University, No.47 (2012) 81



82

on H. By Py, we denote the proximal map-
ping which takes each x € H to the element
y = Ps(x) that is a solution of

(y—z,z—y)g+ f(z) — fly) >0

for all z € H. Py satisfies the following.
1Pz — Prylh < (Pre — Pry,z —y)u  (2)

for all x,y € H.

To introduce our main result, we need the
following theorems. Theorem 1 is the result of
Badriev and Zadvornov in [3]. For the sake of
completeness, we show the proof in Section 4.

Theorem 1. Let V and H be Hilbert spaces.
Let A : V. — V be a oa-inverse-storongly
monotone mapping and B : H — H be a
op-tnverse-strongly monotone mapping. Let
F:V — (—o0,00| and G : H — (—00, 0] be
proper convex lower semicontinuous function-
als. Let A :' V. — H be a linear continuous
mapping and A* : H — V be the adjoint map-
ping of A, i.e., (Nz,v)y = (x,Av)y for all
x € H and v € V. In addition, we assume
that the operator A*A is a canonical isomor-
phism, i.e., v = A*Av for all v € V. Let
Q =V x H x H be the Hilbert space with in-
ner product

()0 = 1 _TAT<.7.>V + i<.7.>H + 1(.7.>H’
TA B T

where T4, Tg and r are positive constants sat-
isfying Tar < 1. Let T : Q — @ be a mapping
defined by T'q = (Tvq, T>q,T5q), where

Tiq = P r(qi—Ta(Aq+AN g3+ N (A1 —q2))),
Tyq = Prya(q2 —mB(Bg2 — g3 +7(q2 — AT1q))),
Ts3q = g3 + r(ATvq — Taq)

for ¢ = (q1,a2,a43) € Q. Let ¢ = (u,y,A).
Then q is a fixed point of T if and only if

—Au — A*X\ € OF (u),
A — By € 0G(y),
y = Au.

Moreover, u is a solution of the problem (1).
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Theorem 2 is the result of Badriev and
Zadvornov in [3]. For the sake of complete-
ness, we show the proof in Section 4.

Theorem 2. Let V and H be Hilbert spaces.
Let A :' V. — V be a oa-inverse-storongly
monotone mapping and B : H — H be a
op-inverse-strongly monotone mapping. Let
F:V — (—o0,00] and G : H — (—00, 00| be
proper convex lower semicontinuous function-
als. Let A 'V — H be a linear continuous
mapping and A* : H — V be the adjoint map-
ping of A, i.e., (Nz,v)y = (x,Av)y for all
x € H and v € V. In addition, we assume
that the operator A*A is a canonical isomor-
phism, i.e., v =AN"Av for allve V. Let Q =
V' x Hx H be the Hilbert space with inner prod-
uct <', ‘>Q = %Cv ‘>V + %<'7 >H + %(7 '>H7
where Tao,Tp and r are positive constants sat-
isfying Tar < 1,

20
2(737” + 1'

204

< — and <
A 2047+ 1 B

Let T : Q — @ be a mapping defined by
Tq = (Tiq,Taq,Tq3), where Tiq = Pr,r(q1 —
TA(Aq + Mgz + rA (Aqr — q2))), Taq =
Proc(q2 — 7B(Bg2 — g3 +1(q2 — AT1q))) and
T3q = q3 +1r(AT1q —Taq) for ¢ = (q1,92,43) €
Q. Then T is nonexpansive, i.e.,

ITq —Tpllg < lla—plq

forall g,p € Q.

Theorem 3 is the result of Wittmann [6].
This theorem is related to results of [1].

Theorem 3. Let H be a Hilbert space and
C be a closed convex subset of H. Let T be
a nonexpansive mapping of C into itself such
that the fixed point of T is nonempty. Let
{2} be a sequence of [0,1] such that

(o]
li (k) — d (k) _
kli% o 0 an kz_o o 00

and

Z laF ) — o] < 0.
k=0
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Let {x")} be an iterative sequence of C de-
fined as follows: (9 = z € C and

26D Z o0 4 (1 — o®)p®)

for k = 0,1,2,.... Then {z®} converges
strongly to Pp(r)x, where Ppr)x is the metric
projection of H onto F(T).

3 Main reslut

Theorem 4. Let V and H be Hilbert spaces.
Let A : V. — V be a ga-inverse-storongly
monotone mapping and B : H — H be a
o p-inverse-strongly monotone mapping. Let
F:V — (—o0,00] and G : H — (—00, 00| be
proper conver lower semicontinuous function-
als. Let A :' V. — H be a linear continuous
mapping and A* : H — V be the adjoint map-
ping of A, i.e., (Nz,v)y = (z,Av)g for all
r € H and v € V. In addition, we assume
that the operator A*A is a canonical isomor-
phism, i.e., v = A*Av for all v € V. Let
Q =V x Hx H be the Hilbert space with in-
ner product

_ L—yr 1 1

<'7'>Q* <'7'>V+_<'7'>H+_<'7'>H;
B r

TA

where T4, Tp and r are positive constants sat-
isfying Tar < 1,

20
20’BT+ 1'

- 20 4
T _va
A 20417 + 1

Let T : Q — @ be a mapping defined by
Tq = (TlQaT2q7T3Q); where

and T <

Tiq = P, r(q1—Ta(Aqi+A*gs+rA* (Aq1—q2)))

Toq = Pryc(q2 —78(Bg2 — g3 +7(q2 — AT1q))),
T3q = g3 + r(ATiq — Thq)

for ¢ = (q1,92,q3) € Q. Assume that F(T)
is nonempty. Let {q®¥)} be the sequence con-
structed by q(o) =qo € Q and

¢* D = o® g 4 (1 — a®)Tg®

for k=0,1,2,..., where {a®} be a sequence
in [0,1] such that

li (k) — (k) —
kli%a 0 and kz_oa 00
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and

Z laF D) — o] < 0.
k=0

Then this iterative sequence {q¢™)} converges
strongly to ¢* in QQ as k — o0, ¢* is a fized
point of T'. Moreover the first component u in
q* = (u,y, ) is a solution of the problem (1).

Proof. By Theorem 2, T' is nonexpansive. By
Theorem 3, we obtain that the sequence {¢(¥)}
converges strongly to a fixed point ¢* =
(u,y,\) of T. By Theorem 1, we have u
is a solution of the problem (Au,v — u)y +
(N*BAu,v —u)y + G(Av) — G(Au) + F(v) —
F(u) > 0 for all v in V. This completes the
proof. [J

4 Appendix

In this section, to sake of completeness, we
show the proof of Theorems 1 and 2.

Proof of Theorem 1. Let ¢ = (u,y,\) be a
fixed point of T'. Then

y="Teq, X="1T3q.

u = Tgq,
By the definition of T3, we have
A= A+r(Au—y).
Then Au —y =0, and
y = Au.
By the definition of T7, we have
u= P, p(u—Ta(Au+ AN+ rA*(Au — y))).

Then we have

(u—(u—Ta(Au + AN+ rA*(Au — y))),
v—u)y +TaF(v) = TaF(u) >0

for all v € V. Since Au — y = 0, we have
(Au+ AN\ v —u)y + F(v) — F(u) >0
for all v € V. Hence we have

F(v) > (—Au— A"\, v — u)y + F(u)
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for all v € V. This implies
—Au — A"\ € OF (u).
By the definition of T5, we have
Y= Prya(y —78(By — A+ r(y — Au))).
Then we have
(y—(y—78(By = A+r(y—Au)),z—y)n

+178G(2) — 8G(y) > 0
for all z € H. Since y — Au = 0, we have

(By =X z—y)u +G(2) = Gly) =0
for all z € H. Hence we have

G(z) 2 (A= By,z —y)n + G(y)
for all z € H. This implies
A — By € 0G(y).

We also obtain that if —Au — A*\ € 0F(u),
A—By € 0G(y) and y = Au, then ¢ = (u,y, \)
is a fixed point of T. Let ¢ = (u,y,v) be a
fixed point of 7. Then we obtain that for all
veV,

(Au+ A*Nv —u)y + F(v) — F(u) >0 (3)
and
(By — A\, Av —y) g + G(Av) — G(y) > 0.
Since y = Au, we have
(By — A, Av —y)i + G(Av) — G(y)

= (BAu — A\, Av — Au) g + G(Av) — G(Au)
= (A*BAu — A" \,v — u)y + G(Av) — G(Au).

Then we have

(N*BAu— A"\ jv—u)y + G(Av) — G(Au) >0

(4)
forallv € V. Adding (3) and (4), we find that
u satisfies the inequality (1). O

To prove Theorem 2, we need the follow-
ing: For all ¢ > 0 and a,b € V, we have

1 2 € 2 1 2
(a,b)v = ollallE + S0l = - la— bl (3)
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Proof of Theorem 2. Define a mapping S4 of
Vinto V by Sqv = (1—7a7)v for v € V. Then
we obtain that for all ¢1,p1 € V,

1Saq1 — Sap1lly
= |(1 = 7ar) (@1 — p1) — Ta(Aq1 — Ap) ¥
= (1= 7ar)?lgs — pu ¥
—274(1 — 7a7)(Aq1 — Ap1,q1 — p1)v
+7illAg — Ap1 |3
< (1—7ar)?lqr — pll¥r
—0a{Aq1 — Ap1,q1 — p1)v, (6)

where (514 = TA(l — TA’I") (2 — ﬁ) By
(2) and (5) with e = 1 —747, a = Saq1 — Sap1
and b = T1q — T p, we have

ITvq — Thpl[3
= ||Pryr(Saqi — TaN* (g3 — 7q2))

— P, r(Sap1 — Tal* (p3 — rp2)) |}
< (Tvq — Tip, Saq1 — Sap1)v

— 7a{T1q — Tip, A" (g3 — p3) — rA*(q2 — p2))v

1
=—|S - S 2
2(1 — TAr) H Aq1 Alev
1 —7ar
+t— 1Tiq — Tup|l}
1 —T1yr
T 1(Saqr — Sap1) — €(Trg — Tip) |3

— 74(T1q — Tip, A" (g3 — p3) — rA*(q2 — p2))v

for all ¢ = (q1,42,93), p = (p1,p2,p3) € Q-
Then, by (8) and (5) with € = 1, we have

1
. |[(Saqi — Sap1) — e(Tig — Tup)|2
(S = Samn) ~ e(Tia = Tl

14 7ar 9

Tiqg — T
+ 974 |Thvq — Tiplli,
1

< ————|Saqs — Sap1lly

- 2(1 — TAT’)TA
— (Thqg — Tp, A" (g3 — p3) — A" (q2 — p2))v
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1 —T7yr

< . 2
= 9 HQ1 p1Hv
oA
- 7<AQ1 —Ap1,q1 —p1)v
— (Thq —Tip, A" (g3 — p3) — A" (g2 — p2))v
B 1—7yr 9
= or, a1 — p1llir
oA
- 7(14(11 — Ap1,q1 — p1)v
— (Tq —Tp, A" (g3 — p3))v
(A(qu —Tip),q2 — p2)u
-7 2
= 2TA lgr — pallf
da
- 7(14(11 —Ap1,q1 —p1)v

— (Tvq —Tip, A" (g3 — p3))v
T T

+ §\|A(T1q —Twp)||I5 + §qu — o3
:

- §\|A(T1q —Tip) — (g2 — p2)|I s

for all ¢, p € Q. Therefore we obtain that
1
(S aq —
2(1 — 7a7)7A I(Saq

— (1 —7ar)(T1q — Tip) |1}

Sap1)

1+ 7ar
Tiqg — T
+ 974 |Thg — Tupll3
T
+ §||A(T1q —Tip) — (g2 — p2) ||
04
+ ?<Aq1 —Api,q1 —p)v
1 —7ygr 9
< —
27A HCJ1 p1||v

— (MTiq —Tip),q3 — p3)u
r r
+ §||A(T1q —Tip)|l7r + §||Q2 — 2l (7)
for all ¢,p € Q. Define a mapping Sp of H
into H by Spx = (1—71pr)x—71pBx forx € H.
Then we obtain that for all g9, ps € H,
1SBa2 — Spp23r
= (1~ 757 la> — ol
—27g(1 —77)(Bq2 — Bp2,q2 — p2)u
+ 73] B2 — Bpal|%
< (1—78r)%(lg2 — p2|| %

- TB(l - TBT)(SB(B(H — Bpa,q2 — p2>H,

(8)

where ép = 2 — m. By (2) and (5)
with ¢ = 1 — 737, a = Sggs — Spps and
b ="Tsrq — Thp, we have

1Toq — Toplh
= ||Pryc(SBq2 + TBT19 + TBY3)
P, (Spp2 + Ter1p + TBP3) | H
= (Tbq — Top, Spq2 — SBp2)H
+ 18(Toq — Top,rA(Trq — T1p) +

1
< —||Spga — S 2
<50 _TBT)H Bg2 — SeP2|H

1—7pr
I B

(@3 —p3))H

1T2q — Topl)3;
1
g
— (1 —7p7)(Tog — Top) || %
+ 15(Toq — Top,rA(T1q — T1p) + (g3 — p3))H

|(SBg2 — SBD2)

Then, by (8) and (5) with € = 1, we have

1
2(1 — TBT)TB
— (1= 7pr)(Tog — Top)|[3

1 + BT
- 1T2q — To|| %

|(SBg2 — SBp2)

1SBq2 — Sep2|%

- 2(1 — TBT)TH
+r({Taq — Top, A(Tyq — T1p))n
+ (Toq — Top,q3 — p3)m

1-— TBT

_ 2
57s g2 — 2|7

IN

1)
- 7B<BCI2 — Bp2,q2 — p2)H

+r({Taq — Top, A(Tvq — Tip))n
+ (Toqg — Top, g3 — p3)H
- 1-— BT
27

||CZ2 —pz”%{

1)
- 7B<BCI2 — Bp2,q2 —p2)H
T T
+ §HT2(J — Top||* + §HA(T1Q —Tip)|%
T
- §H(qu — Top) — MTiq — Tip) |7

+ (Toq — Top,q3 — p3)H
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for all g, p € Q. Therefore we obtain that
1

2(1 —7pr)TB

—(Toq — Top)) — T5(Bgz — Bpa) ||

1 + TBT 2
Tog — T
oy | Toq — Top||7;

,
+ §H(qu — Top) — A(Tiqg — Tip) |3

11 = 757) (g2 — p2)

)
+ 7B<BCJ2 — Bpa,q2 —p2)u

1—71

BT
5 g2 — pallFr + (Toq — Top, q3 — p3)u
B

T T
+ §\|T2q — TopllF + §|’A(T1q —Tip)||H
(9)

for all ¢,p € V. For all ¢,p € V', we have

1T5q — Tpll

= |lgs — sl %
+2r(q3 — p3, A(T1q — T1p) — (T2q — T2)p) 1
+ 2| A(T1q — Tup) — (Taq — Top) |l

Therefore we have
L\ Tq — Tupll?
o 34 3P

1 2
= ZH% — 3l
+ (g3 — p3, A(Thq — T1p) — (Toqg — Top)) H
,
+ §HA(T1Q —Tip) — (Tag — Top) |5 (10)

for all ¢,p € Q. By (7), (9) and (10), we have

|Tq — Tpll3) + 6a{Aqr — Ap1, 1 — p1)v
+0p(Bg2 — Bp2,q2 — p2)u
! X
(1 —7a7)T4
(1 = 7ar)(q1 — p1) — 7a(Aq1 — Ap1)|}
1

(1 —7pr)mp
1(1 = 787)((q2 — p2) — (Taq — Top)) I3
<lg-pl3

X

for all ¢,p € Q. Therefore T is nonexpansive.
O
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5 Further topic

In [2], Badriev and Zadvornov consider a
variational inequality problem for only one
monotone mapping A. The authors show that
for a strongly monotone Lipschitz continuous
mapping A, an iterative sequence converges
strongly to a solution. But using Theorem 3,
we may obtain the strong convergence for an
inverse-strongly monotone mapping A. This
is a further topic.
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