逆強単調写像に関する変分不等式問題を扱った Badriev と **Z**advornov の結果の一考察

Note on Badriev and Zadvornov's results for variational inequality problems for inverse-strongly monotone mappings

豊田昌史

Masashi Toyoda

[‡] 玉川大学工学部マネジメントサイエンス学科, 194–8610 東京都町田市玉川学園 6–1–1 Faculty of Engineering, Tamagawa University, 6–1–1 Tamagawa-gakuen, Machida-shi, Tokyo 194–8610

Abstract

In [3], Badriev and Zadvornov consider a variational inequality problem with two monotone mappings A and B. The authors show that an iterative sequence converges weakly to a solution of the problem under suitable conditions for A and B. In this paper, to apply a theorem in [6], we show an iterative sequence which converges strongly to a solution of the problem under same conditions for A and B in [3].

Keywords: Fixed point, variational inequality problem, inverse-strongly monotone mapping.

1 Introduction

Let V and H be Hilbert spaces with inner products $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_H$, respectively. Let $A: V \to V$ and $B: H \to H$ be mappings and $F: V \to (-\infty, \infty]$ and $G: H \to (-\infty, \infty]$ be proper continuous lower semicontinuous functionals. Let $\Lambda: V \to H$ be a linear continuous mapping and $\Lambda^*: H \to V$ be the adjoint mapping of Λ , i.e., $\langle \Lambda^* x, v \rangle_V = \langle x, \Lambda v \rangle_H$ for all $x \in H$ and $v \in V$. In [3], Badriev and Zadvornov consider the following variational inequality problem. Find $u \in V$ such that

$$\langle Au, v - u \rangle_V + \langle \Lambda^* B \Lambda u, v - u \rangle_V + G(\Lambda v) - G(\Lambda u) + F(v) - F(u) \ge 0$$
 (1)

for all $v \in V$. The authors show that an iterative sequence converges weakly to a solution of the problem under suitable conditions for A and B.

In this paper, to apply a theorem in [6], we show an iterative sequence which converges strongly to a solution of the problem under

same conditions for A and B in [3]. The theorem in [6] is related to the result of our previous paper [1].

2 Preliminaries

Let $A:V\to V$ and $B:H\to H$ be mappings. Mappings $A:H\to H$ and $B:V\to V$ are inverse-storongly monotone mappings if there exists $\sigma_A,\sigma_B>0$ such that

$$\langle Au - Av, u - v \rangle_V > \sigma_A ||Au - Av||_V^2$$

for all $u, v \in V$ and

$$\langle Bx - By, x - y \rangle_H \ge \sigma_B \|Bx - By\|_H^2$$

for all $x,y\in H$. Then A is called σ_A -inverse-strongly monotone and B is called σ_B -inverse-strongly monotone. Let C be a subset of H. A mapping T of C into itself is called nonexpansive if

$$||Tx - Ty||_H \le ||x - y||_H$$

for all $x, y \in C$. We denote by F(T) the set of fixed points of T. Let f be a functional

on H. By P_f , we denote the proximal mapping which takes each $x \in H$ to the element $y = P_f(x)$ that is a solution of

$$\langle y - x, z - y \rangle_H + f(z) - f(y) \ge 0$$

for all $z \in H$. P_f satisfies the following.

$$||P_f x - P_f y||_H^2 \le \langle P_f x - P_f y, x - y \rangle_H \quad (2)$$

for all $x, y \in H$.

To introduce our main result, we need the following theorems. Theorem 1 is the result of Badriev and Zadvornov in [3]. For the sake of completeness, we show the proof in Section 4.

Theorem 1. Let V and H be Hilbert spaces. Let $A: V \to V$ be a σ_A -inverse-storongly monotone mapping and $B: H \to H$ be a σ_B -inverse-strongly monotone mapping. Let $F: V \to (-\infty, \infty]$ and $G: H \to (-\infty, \infty]$ be proper convex lower semicontinuous functionals. Let $\Lambda: V \to H$ be a linear continuous mapping and $\Lambda^*: H \to V$ be the adjoint mapping of Λ , i.e., $\langle \Lambda^*x, v \rangle_V = \langle x, \Lambda v \rangle_H$ for all $x \in H$ and $v \in V$. In addition, we assume that the operator $\Lambda^*\Lambda$ is a canonical isomorphism, i.e., $v = \Lambda^*\Lambda v$ for all $v \in V$. Let $Q = V \times H \times H$ be the Hilbert space with inner product

$$\langle \cdot, \cdot \rangle_Q = \frac{1 - \tau_A r}{\tau_A} \langle \cdot, \cdot \rangle_V + \frac{1}{\tau_B} \langle \cdot, \cdot \rangle_H + \frac{1}{r} \langle \cdot, \cdot \rangle_H,$$

where τ_A, τ_B and r are positive constants satisfying $\tau_A r < 1$. Let $T: Q \to Q$ be a mapping defined by $Tq = (T_1 q, T_2 q, T_3 q)$, where

$$T_1q = P_{\tau_A F}(q_1 - \tau_A (Aq_1 + \Lambda^* q_3 + r\Lambda^* (\Lambda q_1 - q_2))),$$

$$T_2q = P_{\tau_B G}(q_2 - \tau_B(Bq_2 - q_3 + r(q_2 - \Lambda T_1 q))),$$

$$T_3q = q_3 + r(\Lambda T_1 q - T_2 q)$$

for $q = (q_1, q_2, q_3) \in Q$. Let $q = (u, y, \lambda)$. Then q is a fixed point of T if and only if

$$\begin{cases}
-Au - \Lambda^*\lambda \in \partial F(u), \\
\lambda - By \in \partial G(y), \\
y = \Lambda u.
\end{cases}$$

Moreover, u is a solution of the problem (1).

Theorem 2 is the result of Badriev and Zadvornov in [3]. For the sake of completeness, we show the proof in Section 4.

Theorem 2. Let V and H be Hilbert spaces. Let $A: V \to V$ be a σ_A -inverse-storongly monotone mapping and $B: H \to H$ be a σ_B -inverse-strongly monotone mapping. Let $F: V \to (-\infty, \infty]$ and $G: H \to (-\infty, \infty]$ be proper convex lower semicontinuous functionals. Let $\Lambda: V \to H$ be a linear continuous mapping and $\Lambda^*: H \to V$ be the adjoint mapping of Λ , i.e., $\langle \Lambda^*x, v \rangle_V = \langle x, \Lambda v \rangle_H$ for all $x \in H$ and $v \in V$. In addition, we assume that the operator $\Lambda^*\Lambda$ is a canonical isomorphism, i.e., $v = \Lambda^*\Lambda v$ for all $v \in V$. Let $Q = V \times H \times H$ be the Hilbert space with inner product $\langle \cdot, \cdot \rangle_Q = \frac{1-\tau_A r}{\tau_A} \langle \cdot, \cdot \rangle_V + \frac{1}{\tau_B} \langle \cdot, \cdot \rangle_H + \frac{1}{r} \langle \cdot, \cdot \rangle_H$, where τ_A, τ_B and r are positive constants satisfying $\tau_A r < 1$,

$$au_A < rac{2\sigma_A}{2\sigma_A r + 1} \quad and \quad au_B < rac{2\sigma_B}{2\sigma_B r + 1}.$$

Let $T: Q \to Q$ be a mapping defined by $Tq = (T_1q, T_2q, Tq_3)$, where $T_1q = P_{\tau_AF}(q_1 - \tau_A(Aq_1 + \Lambda^*q_3 + r\Lambda^*(\Lambda q_1 - q_2)))$, $T_2q = P_{\tau_BG}(q_2 - \tau_B(Bq_2 - q_3 + r(q_2 - \Lambda T_1q)))$ and $T_3q = q_3 + r(\Lambda T_1q - T_2q)$ for $q = (q_1, q_2, q_3) \in Q$. Then T is nonexpansive, i.e.,

$$||Tq - Tp||_Q \le ||q - p||_Q$$

for all $q, p \in Q$.

Theorem 3 is the result of Wittmann [6]. This theorem is related to results of [1].

Theorem 3. Let H be a Hilbert space and C be a closed convex subset of H. Let T be a nonexpansive mapping of C into itself such that the fixed point of T is nonempty. Let $\{\alpha^{(k)}\}$ be a sequence of [0,1] such that

$$\lim_{k \to 0} \alpha^{(k)} = 0 \quad and \quad \sum_{k=0}^{\infty} \alpha^{(k)} = \infty$$

and

$$\sum_{k=0}^{\infty} |\alpha^{(k+1)} - \alpha^{(k)}| < \infty.$$

Let $\{x^{(k)}\}$ be an iterative sequence of C defined as follows: $x^{(0)} = x \in C$ and

$$x^{(k+1)} = \alpha^{(k)}x + (1 - \alpha^{(k)})Tx^{(k)}$$

for k = 0, 1, 2, ... Then $\{x^{(k)}\}$ converges strongly to $P_{F(T)}x$, where $P_{F(T)}x$ is the metric projection of H onto F(T).

3 Main reslut

Theorem 4. Let V and H be Hilbert spaces. Let $A: V \to V$ be a σ_A -inverse-storongly monotone mapping and $B: H \to H$ be a σ_B -inverse-strongly monotone mapping. Let $F: V \to (-\infty, \infty]$ and $G: H \to (-\infty, \infty]$ be proper convex lower semicontinuous functionals. Let $\Lambda: V \to H$ be a linear continuous mapping and $\Lambda^*: H \to V$ be the adjoint mapping of Λ , i.e., $\langle \Lambda^*x, v \rangle_V = \langle x, \Lambda v \rangle_H$ for all $x \in H$ and $v \in V$. In addition, we assume that the operator $\Lambda^*\Lambda$ is a canonical isomorphism, i.e., $v = \Lambda^*\Lambda v$ for all $v \in V$. Let $Q = V \times H \times H$ be the Hilbert space with inner product

$$\langle \cdot, \cdot \rangle_Q = \frac{1 - \tau_A r}{\tau_A} \langle \cdot, \cdot \rangle_V + \frac{1}{\tau_B} \langle \cdot, \cdot \rangle_H + \frac{1}{r} \langle \cdot, \cdot \rangle_H,$$

where τ_A, τ_B and r are positive constants satisfying $\tau_A r < 1$,

$$\tau_A < \frac{2\sigma_A}{2\sigma_A r + 1} \quad and \quad \tau_B < \frac{2\sigma_B}{2\sigma_B r + 1}.$$

Let $T: Q \rightarrow Q$ be a mapping defined by $Tq = (T_1q, T_2q, T_3q)$, where

$$T_1 q = P_{\tau_A F}(q_1 - \tau_A (Aq_1 + \Lambda^* q_3 + r\Lambda^* (\Lambda q_1 - q_2))),$$

$$T_2q = P_{\tau_B G}(q_2 - \tau_B(Bq_2 - q_3 + r(q_2 - \Lambda T_1 q))),$$

$$T_3q = q_3 + r(\Lambda T_1 q - T_2 q)$$

for $q = (q_1, q_2, q_3) \in Q$. Assume that F(T) is nonempty. Let $\{q^{(k)}\}$ be the sequence constructed by $q^{(0)} = q_0 \in Q$ and

$$q^{(k+1)} = \alpha^{(k)}q_0 + (1 - \alpha^{(k)})Tq^{(k)}$$

for k = 0, 1, 2, ..., where $\{\alpha^{(k)}\}$ be a sequence in [0, 1] such that

$$\lim_{k \to 0} \alpha^{(k)} = 0 \quad and \quad \sum_{k=0}^{\infty} \alpha^{(k)} = \infty$$

and

$$\sum_{k=0}^{\infty} |\alpha^{(k+1)} - \alpha^{(k)}| < \infty.$$

Then this iterative sequence $\{q^{(k)}\}$ converges strongly to q^* in Q as $k \to \infty$, q^* is a fixed point of T. Moreover the first component u in $q^* = (u, y, \lambda)$ is a solution of the problem (1).

Proof. By Theorem 2, T is nonexpansive. By Theorem 3, we obtain that the sequence $\{q^{(k)}\}$ converges strongly to a fixed point $q^* = (u, y, \lambda)$ of T. By Theorem 1, we have u is a solution of the problem $\langle Au, v - u \rangle_V + \langle \Lambda^*B\Lambda u, v - u \rangle_V + G(\Lambda v) - G(\Lambda u) + F(v) - F(u) \geq 0$ for all v in V. This completes the proof. \square

4 Appendix

In this section, to sake of completeness, we show the proof of Theorems 1 and 2.

Proof of Theorem 1. Let $q = (u, y, \lambda)$ be a fixed point of T. Then

$$u = T_1 q, \quad y = T_2 q, \quad \lambda = T_3 q.$$

By the definition of T_3 , we have

$$\lambda = \lambda + r(\Lambda u - y).$$

Then $\Lambda u - y = 0$, and

$$y = \Lambda u$$
.

By the definition of T_1 , we have

$$u = P_{\tau_A F}(u - \tau_A (Au + \Lambda^* \lambda + r\Lambda^* (\Lambda u - y))).$$

Then we have

$$\langle u - (u - \tau_A (Au + \Lambda^* \lambda + r\Lambda^* (\Lambda u - y))),$$

 $v - u \rangle_V + \tau_A F(v) - \tau_A F(u) \ge 0$

for all $v \in V$. Since $\Lambda u - y = 0$, we have

$$\langle Au + \Lambda^*\lambda, v - u\rangle_V + F(v) - F(u) \ge 0$$

for all $v \in V$. Hence we have

$$F(v) \ge \langle -Au - \Lambda^* \lambda, v - u \rangle_V + F(u)$$

for all $v \in V$. This implies

$$-Au - \Lambda^*\lambda \in \partial F(u).$$

By the definition of T_2 , we have

$$y = P_{\tau_B G}(y - \tau_B(By - \lambda + r(y - \Lambda u))).$$

Then we have

$$\langle y - (y - \tau_B(By - \lambda + r(y - \Lambda u))), z - y \rangle_H + \tau_B G(z) - \tau_B G(y) \ge 0$$

for all $z \in H$. Since $y - \Lambda u = 0$, we have

$$\langle By - \lambda, z - y \rangle_H + G(z) - G(y) \ge 0$$

for all $z \in H$. Hence we have

$$G(z) \ge \langle \lambda - By, z - y \rangle_H + G(y)$$

for all $z \in H$. This implies

$$\lambda - By \in \partial G(y).$$

We also obtain that if $-Au - \Lambda^*\lambda \in \partial F(u)$, $\lambda - By \in \partial G(y)$ and $y = \Lambda u$, then $q = (u, y, \lambda)$ is a fixed point of T. Let q = (u, y, v) be a fixed point of T. Then we obtain that for all $v \in V$,

$$\langle Au + \Lambda^* \lambda, v - u \rangle_V + F(v) - F(u) \ge 0$$
 (3)

and

$$\langle By - \lambda, \Lambda v - y \rangle_H + G(\Lambda v) - G(y) > 0.$$

Since $y = \Lambda u$, we have

$$\langle By - \lambda, \Lambda v - y \rangle_H + G(\Lambda v) - G(y)$$

$$= \langle B\Lambda u - \lambda, \Lambda v - \Lambda u \rangle_H + G(\Lambda v) - G(\Lambda u)$$

$$= \langle \Lambda^* B\Lambda u - \Lambda^* \lambda, v - u \rangle_V + G(\Lambda v) - G(\Lambda u).$$

Then we have

$$\langle \Lambda^* B \Lambda u - \Lambda^* \lambda, v - u \rangle_V + G(\Lambda v) - G(\Lambda u) \ge 0$$
(4)

for all $v \in V$. Adding (3) and (4), we find that u satisfies the inequality (1). \square

To prove Theorem 2, we need the following: For all $\epsilon > 0$ and $a, b \in V$, we have

$$\langle a, b \rangle_V = \frac{1}{2\epsilon} \|a\|_V^2 + \frac{\epsilon}{2} \|b\|_V^2 - \frac{1}{2\epsilon} \|a - b\|_V^2.$$
 (5)

Proof of Theorem 2. Define a mapping S_A of V into V by $S_A v = (1 - \tau_A r)v$ for $v \in V$. Then we obtain that for all $q_1, p_1 \in V$,

$$||S_{A}q_{1} - S_{A}p_{1}||_{V}^{2}$$

$$= ||(1 - \tau_{A}r)(q_{1} - p_{1}) - \tau_{A}(Aq_{1} - Ap_{1})||_{V}^{2}$$

$$= (1 - \tau_{A}r)^{2}||q_{1} - p_{1}||_{V}^{2}$$

$$- 2\tau_{A}(1 - \tau_{A}r)\langle Aq_{1} - Ap_{1}, q_{1} - p_{1}\rangle_{V}$$

$$+ \tau_{A}^{2}||Aq_{1} - Ap_{1}||_{V}^{2}$$

$$\leq (1 - \tau_{A}r)^{2}||q_{1} - p_{1}||_{V}^{2}$$

$$- \delta_{A}\langle Aq_{1} - Ap_{1}, q_{1} - p_{1}\rangle_{V},$$
(6)

where $\delta_A = \tau_A (1 - \tau_A r) \left(2 - \frac{\tau_A}{\sigma_A (1 - \tau_A r)} \right)$. By (2) and (5) with $\epsilon = 1 - \tau_A r$, $a = S_A q_1 - S_A p_1$ and $b = T_1 q - T_1 p$, we have

$$||T_{1}q - T_{1}p||_{V}^{2}$$

$$= ||P_{\tau_{A}F}(S_{A}q_{1} - \tau_{A}\Lambda^{*}(q_{3} - rq_{2})) - P_{\tau_{A}F}(S_{A}p_{1} - \tau_{A}\Lambda^{*}(p_{3} - rp_{2}))||_{V}^{2}$$

$$\leq \langle T_{1}q - T_{1}p, S_{A}q_{1} - S_{A}p_{1}\rangle_{V} - \tau_{A}\langle T_{1}q - T_{1}p, \Lambda^{*}(q_{3} - p_{3}) - r\Lambda^{*}(q_{2} - p_{2})\rangle_{V}$$

$$= \frac{1}{2(1 - \tau_{A}r)} ||S_{A}q_{1} - S_{A}p_{1}||_{V}^{2}$$

$$+ \frac{1 - \tau_{A}r}{2} ||T_{1}q - T_{1}p||_{V}^{2}$$

$$- \frac{1 - \tau_{A}r}{2} ||(S_{A}q_{1} - S_{A}p_{1}) - \epsilon(T_{1}q - T_{1}p)||_{V}^{2}$$

$$- \tau_{A}\langle T_{1}q - T_{1}p, \Lambda^{*}(q_{3} - p_{3}) - r\Lambda^{*}(q_{2} - p_{2})\rangle_{V}$$

for all $q = (q_1, q_2, q_3), p = (p_1, p_2, p_3) \in Q$. Then, by (8) and (5) with $\epsilon = 1$, we have

$$\frac{1}{(1 - \tau_A r)\tau_A} \| (S_A q_1 - S_A p_1) - \epsilon (T_1 q - T_1 p) \|_V^2
+ \frac{1 + \tau_A r}{2\tau_A} \| T_1 q - T_1 p \|_V^2
\leq \frac{1}{2(1 - \tau_A r)\tau_A} \| S_A q_1 - S_A p_1 \|_V^2
- \langle T_1 q - T_1 p, \Lambda^* (q_3 - p_3) - r\Lambda^* (q_2 - p_2) \rangle_V$$

$$\leq \frac{1 - \tau_{A}r}{2\tau_{A}} \|q_{1} - p_{1}\|_{V}^{2}$$

$$- \frac{\delta_{A}}{2} \langle Aq_{1} - Ap_{1}, q_{1} - p_{1} \rangle_{V}$$

$$- \langle T_{1}q - T_{1}p, \Lambda^{*}(q_{3} - p_{3}) - r\Lambda^{*}(q_{2} - p_{2}) \rangle_{V}$$

$$= \frac{1 - \tau_{A}r}{2\tau_{A}} \|q_{1} - p_{1}\|_{V}^{2}$$

$$- \frac{\delta_{A}}{2} \langle Aq_{1} - Ap_{1}, q_{1} - p_{1} \rangle_{V}$$

$$- \langle T_{1}q - T_{1}p, \Lambda^{*}(q_{3} - p_{3}) \rangle_{V}$$

$$+ r \langle \Lambda(T_{1}q - T_{1}p), q_{2} - p_{2} \rangle_{H}$$

$$= \frac{1 - \tau_{A}r}{2\tau_{A}} \|q_{1} - p_{1}\|_{V}^{2}$$

$$- \frac{\delta_{A}}{2} \langle Aq_{1} - Ap_{1}, q_{1} - p_{1} \rangle_{V}$$

$$- \langle T_{1}q - T_{1}p, \Lambda^{*}(q_{3} - p_{3}) \rangle_{V}$$

$$+ \frac{r}{2} \|\Lambda(T_{1}q - T_{1}p)\|_{H}^{2} + \frac{r}{2} \|q_{2} - p_{2}\|_{H}^{2}$$

$$- \frac{r}{2} \|\Lambda(T_{1}q - T_{1}p) - (q_{2} - p_{2})\|_{H}^{2}$$

for all $q, p \in Q$. Therefore we obtain that

$$\frac{1}{2(1-\tau_{A}r)\tau_{A}} \| (S_{A}q_{1}-S_{A}p_{1}) - (1-\tau_{A}r)(T_{1}q-T_{1}p) \|_{V}^{2} + \frac{1+\tau_{A}r}{2\tau_{A}} \| T_{1}q-T_{1}p \|_{V}^{2} + \frac{r}{2} \| \Lambda(T_{1}q-T_{1}p) - (q_{2}-p_{2}) \|_{H}^{2} + \frac{\delta_{A}}{2} \langle Aq_{1}-Ap_{1}, q_{1}-p_{1} \rangle_{V} \\
\leq \frac{1-\tau_{A}r}{2\tau_{A}} \| q_{1}-p_{1} \|_{V}^{2} - \langle \Lambda(T_{1}q-T_{1}p), q_{3}-p_{3} \rangle_{H} + \frac{r}{2} \| \Lambda(T_{1}q-T_{1}p) \|_{H}^{2} + \frac{r}{2} \| q_{2}-p_{2} \|_{H}^{2} \quad (7)$$

for all $q, p \in Q$. Define a mapping S_B of H into H by $S_B x = (1 - \tau_B r) x - \tau_B B x$ for $x \in H$. Then we obtain that for all $q_2, p_2 \in H$,

$$||S_{B}q_{2} - S_{B}p_{2}||_{H}^{2}$$

$$= ||(1 - \tau_{B}r)^{2}||q_{2} - p_{2}||_{H}^{2}$$

$$- 2\tau_{B}(1 - \tau_{B}r)\langle Bq_{2} - Bp_{2}, q_{2} - p_{2}\rangle_{H}$$

$$+ \tau_{B}^{2}||Bq_{2} - Bp_{2}||_{H}^{2}$$

$$\leq (1 - \tau_{B}r)^{2}||q_{2} - p_{2}||_{H}^{2}$$

$$- \tau_{B}(1 - \tau_{B}r)\delta_{B}\langle Bq_{2} - Bp_{2}, q_{2} - p_{2}\rangle_{H},$$
(8)

where $\delta_B = 2 - \frac{\tau_B}{\sigma_B(1-\tau_B r)}$. By (2) and (5) with $\epsilon = 1 - \tau_B r$, $a = S_B q_2 - S_B p_2$ and $b = T_2 q - T_2 p$, we have

$$||T_{2}q - T_{2}p||_{H}^{2}$$

$$= ||P_{\tau_{B}G}(S_{B}q_{2} + \tau_{B}r_{1}q + \tau_{B}q_{3}) - P_{\tau_{B}G}(S_{B}p_{2} + \tau_{B}r_{1}p + \tau_{B}p_{3})||_{H}^{2}$$

$$= \langle T_{2}q - T_{2}p, S_{B}q_{2} - S_{B}p_{2} \rangle_{H}$$

$$+ \tau_{B}\langle T_{2}q - T_{2}p, r\Lambda(T_{1}q - T_{1}p) + (q_{3} - p_{3}) \rangle_{H}$$

$$\leq \frac{1}{2(1 - \tau_{B}r)} ||S_{B}q_{2} - S_{B}p_{2}||_{H}^{2}$$

$$+ \frac{1 - \tau_{B}r}{2} ||T_{2}q - T_{2}p||_{H}^{2}$$

$$- \frac{1}{2(1 - \tau_{B}r)} ||(S_{B}q_{2} - S_{B}p_{2})$$

$$- (1 - \tau_{B}r)(T_{2}q - T_{2}p)||_{H}^{2}$$

$$+ \tau_{B}\langle T_{2}q - T_{2}p, r\Lambda(T_{1}q - T_{1}p) + (q_{3} - p_{3}) \rangle_{H}$$

Then, by (8) and (5) with $\epsilon = 1$, we have

$$\frac{1}{2(1-\tau_{B}r)\tau_{B}} \| (S_{B}q_{2}-S_{B}p_{2}) - (1-\tau_{B}r)(T_{2}q-T_{2}p) \|_{H}^{2} + \frac{1+\tau_{B}r}{2\tau_{B}} \| T_{2}q-T_{2} \|_{H}^{2} \\
\leq \frac{1}{2(1-\tau_{B}r)\tau_{B}} \| S_{B}q_{2}-S_{B}p_{2} \|_{H}^{2} \\
+ r\langle T_{2}q-T_{2}p, \Lambda(T_{1}q-T_{1}p)\rangle_{H} \\
+ \langle T_{2}q-T_{2}p, q_{3}-p_{3}\rangle_{H}$$

$$\leq \frac{1-\tau_{B}r}{2\tau_{B}} \| q_{2}-p_{2} \|_{H}^{2} \\
-\frac{\delta_{B}}{2} \langle Bq_{2}-Bp_{2}, q_{2}-p_{2}\rangle_{H} \\
+ r\langle T_{2}q-T_{2}p, \Lambda(T_{1}q-T_{1}p)\rangle_{H} \\
+ \langle T_{2}q-T_{2}p, q_{3}-p_{3}\rangle_{H}$$

$$= \frac{1-\tau_{B}r}{2\tau_{B}} \| q_{2}-p_{2} \|_{H}^{2} \\
-\frac{\delta_{B}}{2} \langle Bq_{2}-Bp_{2}, q_{2}-p_{2}\rangle_{H} \\
+\frac{r}{2} \| T_{2}q-T_{2}p \|^{2} +\frac{r}{2} \| \Lambda(T_{1}q-T_{1}p) \|_{H}^{2} \\
-\frac{r}{2} \| (T_{2}q-T_{2}p, q_{3}-p_{3})_{H}$$

$$+\langle T_{2}q-T_{2}p, q_{3}-p_{3}\rangle_{H}$$

for all $q, p \in Q$. Therefore we obtain that

$$\frac{1}{2(1-\tau_{B}r)\tau_{B}} \| (1-\tau_{B}r) ((q_{2}-p_{2})) - (T_{2}q-T_{2}p)) - \tau_{B}(Bq_{2}-Bp_{2}) \|_{H}^{2} + \frac{1+\tau_{B}r}{2\tau_{B}} \| T_{2}q-T_{2}p \|_{H}^{2} + \frac{r}{2} \| (T_{2}q-T_{2}p) - \Lambda(T_{1}q-T_{1}p) \|_{H}^{2} + \frac{\delta_{B}}{2} \langle Bq_{2}-Bp_{2}, q_{2}-p_{2} \rangle_{H} \\
\leq \frac{1-\tau_{B}r}{2\tau_{B}} \| q_{2}-p_{2} \|_{H}^{2} + \langle T_{2}q-T_{2}p, q_{3}-p_{3} \rangle_{H} \\
+ \frac{r}{2} \| T_{2}q-T_{2}p \|_{H}^{2} + \frac{r}{2} \| \Lambda(T_{1}q-T_{1}p) \|_{H}^{2} \tag{9}$$

for all $q, p \in V$. For all $q, p \in V$, we have

$$||T_3q - T_3p||_H^2$$

$$= ||q_3 - p_3||_H^2$$

$$+ 2r\langle q_3 - p_3, \Lambda(T_1q - T_1p) - (T_2q - T_2)p\rangle_H$$

$$+ r^2||\Lambda(T_1q - T_1p) - (T_2q - T_2p)||_H^2.$$

Therefore we have

$$\frac{1}{2r} \|T_3 q - T_3 p\|_H^2
= \frac{1}{2r} \|q_3 - p_3\|_H^2
+ \langle q_3 - p_3, \Lambda(T_1 q - T_1 p) - (T_2 q - T_2 p)\rangle_H
+ \frac{r}{2} \|\Lambda(T_1 q - T_1 p) - (T_2 q - T_2 p)\|_H^2$$
 (10)

for all $q, p \in Q$. By (7), (9) and (10), we have

$$||Tq - Tp||_{Q}^{2} + \delta_{A}\langle Aq_{1} - Ap_{1}, q_{1} - p_{1}\rangle_{V} + \delta_{B}\langle Bq_{2} - Bp_{2}, q_{2} - p_{2}\rangle_{H} + \frac{1}{(1 - \tau_{A}r)\tau_{A}} \times ||(1 - \tau_{A}r)(q_{1} - p_{1}) - \tau_{A}(Aq_{1} - Ap_{1})||_{V}^{2} + \frac{1}{(1 - \tau_{B}r)\tau_{B}} \times ||(1 - \tau_{B}r)((q_{2} - p_{2}) - (T_{2}q - T_{2}p))||_{H}^{2} \leq ||q - p||_{Q}^{2}$$

for all $q, p \in Q$. Therefore T is nonexpansive. \square

5 Further topic

In [2], Badriev and Zadvornov consider a variational inequality problem for only one monotone mapping A. The authors show that for a strongly monotone Lipschitz continuous mapping A, an iterative sequence converges strongly to a solution. But using Theorem 3, we may obtain the strong convergence for an inverse-strongly monotone mapping A. This is a further topic.

参考文献

- [1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Analysis, 67 (2007), 2350–2360.
- [2] I. B. Badriev and O. A. Zadvornov, A decomposition method for variational inequalities of the second kind with strongly inverse-monotone operators, Differential Equations, **39** (2003), 936–944.
- [3] I. B. Badriev and O. A. Zadvornov, On the convergence of the dual-type iterative method for mixed variational inequalities, Differential Equations, 42 (2006), 1180– 1188.
- [4] I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland American Elsevier, 1976.
- [5] E. G. Golshtein and N. V. Tretyakov, Modified Lagrangians and Monotone Maps in Optimization, John Wiley & Sons, Inc., 1996.
- [6] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Archive der Mathematics, 58 (1992), 486–491.

2012年1月31日原稿受付 Received, January 31, 2012